If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=20
We move all terms to the left:
4y^2-(20)=0
a = 4; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·4·(-20)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*4}=\frac{0-8\sqrt{5}}{8} =-\frac{8\sqrt{5}}{8} =-\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*4}=\frac{0+8\sqrt{5}}{8} =\frac{8\sqrt{5}}{8} =\sqrt{5} $
| 9=t+682 | | -3x-8=2-1x | | 45x+2,555x-42=65(40x+20) | | 5(n+67)+54=49 | | -10=2(x-0) | | -2x-7=1x+14 | | 56−q=94 | | 12-5n=2(-3n+6)+n | | 10x=+16 | | 3x-4=8+1x | | -28-2x=3x+7 | | -4+1x=3x+2 | | x^2+12x+59=0 | | -1x-15=3x+9 | | (5x+2)^2=28 | | 2^(y+1)+8^y=3*4^y | | -6j-(-20j)-(-9)=5 | | -9+2x=-3x+16 | | 2/3(1+n)=1/2(n) | | 9(v+4)+18=99 | | -3x-4=-1x+2 | | -10-2x=1x+11 | | r–2=2 | | -3x-5=3-1x | | -16t^2+240t-704t=0 | | 11x-3=-15 | | -28=9(r+65)+26 | | -8=-(r+2)+-4 | | -15-1x=9+3x | | 6(x+-5)=5x+8 | | 7c+2=4c-10 | | -2+1x=3x+6 |